A Novel Two-Axis Load Sensor Designed for in Situ Scratch Testing inside Scanning Electron Microscopes

نویسندگان

  • Hu Huang
  • Hongwei Zhao
  • Boda Wu
  • Shunguang Wan
  • Chengli Shi
چکیده

Because of a lack of available miniaturized multiaxial load sensors to measure the normal load and the lateral load simultaneously, quantitative in situ scratch devices inside scanning electron microscopes and the transmission electron microscopes have barely been developed up to now. A novel two-axis load sensor was designed in this paper. With an I-shaped structure, the sensor has the function of measuring the lateral load and the normal load simultaneously, and at the same time it has compact dimensions. Finite element simulations were carried out to evaluate stiffness and modal characteristics. A decoupling algorithm was proposed to resolve the cross-coupling between the two-axis loads. Natural frequency of the sensor was tested. Linearity and decoupling parameters were obtained from the calibration experiments, which indicate that the sensor has good linearity and the cross-coupling between the two axes is not strong. Via the decoupling algorithm and the corresponding decoupling parameters, simultaneous measurement of the lateral load and the normal load can be realized via the developed two-axis load sensor. Preliminary applications of the load sensor for scratch testing indicate that the load sensor can work well during the scratch testing. Taking advantage of the compact structure, it has the potential ability for applications in quantitative in situ scratch testing inside SEMs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Miniaturized In Situ Tensile Platform under Microscope

Aiming at the mechanical testing of three-dimensional specimens with feature size of centimeter level, a miniaturized tensile platform, which presents compatibility with scanning electron microscope (SEM) and metallographic microscope, was designed and built. The platform could accurately evaluate the parameters such as elastic modulus, elongation and yield limit, etc. The calibration experimen...

متن کامل

Quantitative in situ TEM tensile testing of an individual nickel nanowire.

In this paper, we have demonstrated the usage of a novel micro-mechanical device (MMD) to perform quantitative in situ tensile tests on individual metallic nanowires inside a transmission electron microscope (TEM). Our preliminary experiment on a 360 nm diameter nickel nanowire showed that the sample fractured at an engineering stress of ∼ 1.2 GPa and an engineering strain of ∼ 4%, which is con...

متن کامل

Multi-axis compliant mechanism-based nanopositioner for multi-mode mechanical testing

This thesis documents the design of a multi-axis nanopositioner that addresses a need for carbon nanotube (CNT) instrumentation that is capable of multiple modes of mechanical testing. This nanopositioner is a solution to the need to quantify the mechanical properties of CNTs with the appropriate modes of testing, such as simultaneous bending and tensile loading. This information is important a...

متن کامل

A Multiscale Material Testing System for In Situ Optical and Electron Microscopes and Its Application

We report a novel material testing system (MTS) that uses hierarchical designs for in-situ mechanical characterization of multiscale materials. This MTS is adaptable for use in optical microscopes (OMs) and scanning electron microscopes (SEMs). The system consists of a microscale material testing module (m-MTM) and a nanoscale material testing module (n-MTM). The MTS can measure mechanical prop...

متن کامل

Brittle Fracture of 2D MoSe2.

An in situ quantitative tensile testing platform is developed to enable the uniform in-plane loading of a freestanding membrane of 2D materials inside a scanning electron microscope. The in situ tensile testing reveals the brittle fracture of large-area MoSe2 crystals and measures their fracture strength for the first time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013